\(\int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx\) [215]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 120 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {19 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d} \]

[Out]

19/4*a^(5/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+9/4*a^3*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*co
s(d*x+c))^(1/2)+1/2*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)/d

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2842, 3060, 2853, 222} \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {19 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {9 a^3 \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}}+\frac {a^2 \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d} \]

[In]

Int[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Cos[c + d*x]],x]

[Out]

(19*a^(5/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (9*a^3*Sqrt[Cos[c + d*x]]*Sin[c +
 d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(2*d)

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2842

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Dist[1/(
d*(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d
*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{2} \int \frac {\sqrt {a+a \cos (c+d x)} \left (\frac {5 a^2}{2}+\frac {9}{2} a^2 \cos (c+d x)\right )}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}+\frac {1}{8} \left (19 a^2\right ) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d}-\frac {\left (19 a^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d} \\ & = \frac {19 a^{5/2} \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {9 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.80 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.52 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {(a (1+\cos (c+d x)))^{5/2} \sec ^4\left (\frac {1}{2} (c+d x)\right ) \left (7 (89+28 \cos (c+d x)+3 \cos (2 (c+d x))) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {1}{2},\frac {7}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )+8 (3+\cos (c+d x)) \operatorname {Hypergeometric2F1}\left (\frac {3}{2},\frac {3}{2},\frac {9}{2},2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2(c+d x)+2 \csc ^2\left (\frac {1}{2} (c+d x)\right ) \, _3F_2\left (\frac {3}{2},\frac {3}{2},2;1,\frac {9}{2};2 \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^4(c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )}{420 d} \]

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)/Sqrt[Cos[c + d*x]],x]

[Out]

((a*(1 + Cos[c + d*x]))^(5/2)*Sec[(c + d*x)/2]^4*(7*(89 + 28*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Hypergeometric
2F1[1/2, 1/2, 7/2, 2*Sin[(c + d*x)/2]^2] + 8*(3 + Cos[c + d*x])*Hypergeometric2F1[3/2, 3/2, 9/2, 2*Sin[(c + d*
x)/2]^2]*Sin[c + d*x]^2 + 2*Csc[(c + d*x)/2]^2*HypergeometricPFQ[{3/2, 3/2, 2}, {1, 9/2}, 2*Sin[(c + d*x)/2]^2
]*Sin[c + d*x]^4)*Tan[(c + d*x)/2])/(420*d)

Maple [A] (verified)

Time = 13.84 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.43

method result size
default \(\frac {\left (2 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+19 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+11 \cos \left (d x +c \right ) \sin \left (d x +c \right )+19 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a^{2}}{4 d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}\) \(172\)

[In]

int((a+cos(d*x+c)*a)^(5/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(2*cos(d*x+c)^2*sin(d*x+c)+19*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2))+11*cos(d*x+c)*sin(d*x+c)+19*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(tan(d*x+c)*(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)))*(a*(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(1/2)/(1+cos(d*x+c))*a^2

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.92 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\frac {{\left (2 \, a^{2} \cos \left (d x + c\right ) + 11 \, a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 19 \, {\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*((2*a^2*cos(d*x + c) + 11*a^2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 19*(a^2*cos(d*x
+ c) + a^2)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c
) + d)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**(5/2)/cos(d*x+c)**(1/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1106 vs. \(2 (100) = 200\).

Time = 0.47 (sec) , antiderivative size = 1106, normalized size of antiderivative = 9.22 \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((a^2*cos(1/2*arctan2(sin(2*d
*x + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) + a^2*sin(2*d*x + 2*c) - (a^2*cos(2*d*x + 2*c) - 10*a^2)*sin(1/
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (a^
2*sin(2*d*x + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a^2*cos(2*d*x + 2*c) + 10*a^2 + (a^2
*cos(2*d*x + 2*c) - 10*a^2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x +
2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + 19*(a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x
 + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos
(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c
), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*ar
ctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a^
2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*
x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*c
os(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) - 1) - a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*
c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*
c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) +
 1)) + 1) + a^2*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1
)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/d

Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(5/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{5/2}}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + a*cos(c + d*x))^(5/2)/cos(c + d*x)^(1/2), x)